Sustainable Marine adopts German Aerospace and Wind Energy Technology to advance Tidal Turbine Blades

Together with our partners from  and  we started the project #EVOFoil optimizing the performance of tidal turbine foils for renewable #TidalEnergy, financed by the National Research Council of Canada (NRC) and the German Federal Ministry for Economic Affairs and Energy (BMWi). Our research is focused on a new material concept to improve the mechanical behavior of the foil to counteract the various loads under seawater conditions. This implicates the adoption of the hybrid technology #Multilayer-Insert to enable the load carrying areas of the foil to be partially reinforced with thin metallic sheets, improving adaption to the turbine drive shaft boosting durability and strength.
See the entire press release at our partners website.

 

AutoBLADE

AutoBLADE – Automatisierte Technologie zur Herstellung von kontinuierlich drapierten Preforms für großflächige FVK-Infusionsbauteile mit hohem Aspektverhältnis

Die Nutzbarmachung der Energie aus Gezeitenströmungen bietet großes Potenzial, den erneuerbaren Anteil im Energiemix der Zukunft zu steigern. Die Herstellung von Rotorblättern für die hierzu notwendigen Gezeitenkraftwerke ist gleichermaßen, wie die Produktion von Windkraftrotorblättern, gekennzeichnet von einem überwiegenden Anteil manueller Handarbeit. Dies betrifft insbesondere den Prozessschritt des Preformings, bei dem ein großflächiger, textiler Vorformling hergestellt wird, der in einem anschließenden Schritt mit der polymeren Matrix vakuuminfundiert wird. Während das Preforming für Bauteile kleiner und mittlerer Größe in der Regel über das Verpressen bebinderter Textillagen erfolgt, existiert kein automatisiertes Pendant für großflächige Bauteile mit einem hohen Längen-zu-Breitenverhältnis (Aspektverhältnis). Gelingt es, das Preforming für derartige FVK-Bauteile zu automatisieren, können sowohl wirtschaftliche als auch qualitätsspezifische Fertigungsoptimierungen für die nachhaltige Energieerzeugung in Aussicht gestellt werden.

Ziel des im Innovationsverbund der LU Hannover, TU Clausthal und TU Braunschweig durchzuführenden Forschungsprojekts ist die Entwicklung und Erforschung einer automatisierten Technologie zur Herstellung von kontinuierlich drapierten Preforms für großflächige FVK-Infusionsbauteile mit hohem Aspektverhältnis. Der neuartige, vollautomatisierte Herstellungsprozess, der anhand eines Technologiedemonstrators in Form eines Rotorblatts für Gezeitenkraftwerke entwickelt wird, umfasst den lagenweisen Aufbau eines Preforms durch kontinuierliches Drapieren online bebinderter textiler Halbzeuge auf komplex gekrümmte Oberflächen.

Mit Hilfe des im Projekt FlexProCFK entwickelten Funktionsdemonstrator eines Drapierlegekopfes für komplexe Strukturbauteile wird eine neue Technologie zum kontinuierlichen Aufbau eines Trockenfaser-Preforms entwickelt und erforscht. Ein Forschungsschwerpunkt ist hierbei die Fixierung des Fasertextils mittels eines aufgesprühten Binders auf der Werkzeugform oder der zuvor abgelegten Textillage, um ein Verrutschen zu vermeiden. Der Legeprozess wird dabei auf das Aktivierungsverhalten verschiedener Bindertypen angepasst und der Einfluss auf die Qualität des Preforms untersucht. Weiterführend wird das Infusionsverhalten des Preforms unter dem Einfluss des Bindermaterials und -menge in Permeabilitätsmessungen untersucht und zur Verwendung in Infusionssimulationen modelliert. Im betrachteten Technologiedemonstrator stellen fertigungsinduzierte Faserwinkelabweichungen und Faltenbildung im Preform eine der häufigsten Versagensursachen dar. Durch die stereoskopische Aufnahme der Faserstruktur nach der Ablage werden die Faserwinkel und Drapierfehler im Preform erfasst und dienen einer realitätsnahen Infusionssimulation und Strukturanalyse zur Eigenschaftscharakterisierung des Rotorblattes als Grundlage. Es wird simulativ der Einfluss lokaler Faserwinkelabweichungen auf mechanische Bauteileigenschaften wie Festigkeit und Stabilität in Abhängigkeit von Bauteilgeometrieparametern und Materialeigenschaften untersucht. Durch den kontinuierlichen Austausch im Innovationsverbund werden die Erkenntnisse aus den experimentellen und simulativen Untersuchungen effizient verknüpft und in die Prozessentwicklung zur Steigerung der Preformqualität einbezogen.

Förderer: EUROPÄISCHEN FONDS FÜR REGIONALE ENTWICKLUNG (EFRE)

Informations- und Kommunikationspflichten | NBank

Laufzeit: 2021-2022

EvoFoil

Entwicklung der nächsten Generation von Rotorblättern für Gezeitenströmungsturbinen

Das Projekt EvoFoil erfolgt als Kooperationsprojekt der Partner Sustainable Marine Energy Canada Ltd, M&D Composites Technologie GmbH und dem Institut für Fertigungstechnik und Werkzeugmaschinen (IFW) der Leibniz Universität Hannover (LUH). Es handelt sich um ein internationales Forschungs- und Entwicklungskooperationsprojekt, das auf kanadischer Seite durch die Nationale Forschungseinrichtung Kanada (National Research Council of Canada – NRC) innerhalb des Industrie- und Forschungsunterstützungsprogramms (Industrial Research Assistance Program – IRAP) gefördert wird. Auf deutscher Seite erfolgt die Förderung durch das Bundesministerium für Wirtschaft und Energie (BMWi) in Form des Zentralen Innovationsprogramms Mittelstand (ZIM). Ziel des Forschungsvorhabens ist es, eine neue Generation von robusten und wirtschaftlichen Rotorblättern für Gezeitenströmungsturbinen zu entwickeln, die aufgrund ihres Einsatzes innerhalb der rauen Meerwasserumgebung in der Bay of Fundy vor der Küste Nova Scotia’s in Kanada erheblichen Betriebs- und Umgebungslasten, wie Korrosion und Abrasion ausgesetzt sind.

Das IFW entwickelt und erforscht innerhalb des Projekts eine belastungsgerechte Anbindung der Rotorblätter an die Turbinennabe. Grundlage bildet dabei das im DFG geförderten Schwerpunktprogramm SPP 1712 erforschte Lasteinleitungsprinzip des „Multilayer-Inserts“, bei dem Einzellagen faserverstärkter Laminate durch metallische Einleger substituiert werden, um die lokalen Eigenschaften des Laminats in Bezug auf eine Lasteinleitung zu verbessern. Dazu erforscht das IFW zunächst die das Verhalten von hybriden Bauweisen in Laminatrandbereichen und während des Betriebs in korrosiven und abrasiven Medien. Durch die großflächige Fügung entstehen zu erforschende Fragestellungen in der Grenzschicht zwischen Metall und FKV, die unter dem Einfluss von thermischen und mechanischen Lasten untersucht werden. Ziel ist es, eine geeignete Oberflächenbehandlung zu identifizieren, die eine ausreichende Steifigkeit und Festigkeit der verwendeten Laminate im Verbund erzeugt. Die gewonnenen Erkenntnisse der anwendungsorientierten Erforschung der Multilayer-Insert Bauweise münden in einem neuen Rotorblattdesign, das unter Zuhilfenahme numerischer Methoden in einer optimierte Blattwurzelstruktur in Mischbauweise überführt wird. Zum Schutz des Blattes werden außerdem Beschichtungssysteme entwickelt und innerhalb des Projekts durch Labor- und Feldtests auf ihre Eignung untersucht. Eine Erweiterung der Blätter um Winglets geht außerdem mit einer Wirkungsgradsteigerung einher, die die Wettbewerbsfähigkeit der neuen Blattgeneration trotz der gesteigerten Komplexität sicherstellt. In Zusammenarbeit der Partner entsteht so ein Rotorblattdesign, das den rauen Bedingungen der Offshore-Energieerzeugung gewachsen ist und ihnen bei reduziertem Wartungsaufwand standhält.

Förderer: Nationalen Forschungseinrichtung Kanada (National Research Council of Canada – NRC) und seinem Industrie- und Forschungsunterstützungsprogramm (Industrial Research Assistenz Programm – IRAP) und Bundesministerium für Wirtschaft und Energie (BMWi), Zentrales Innovationsprogramm Mittelstand (ZIM) 

Laufzeit: 2021 – 2023

   Dieses Bild hat ein leeres Alt-Attribut. Der Dateiname ist NRC.jpeg

TackTIC

Tack of Thermoset Impregnated Carbon Fibers

Charakterisierung und Modellierung von Prepreg-Tack für die automatisierte Fertigung von CFK-Strukturen

Für die Herstellung großflächiger, hochbelastbarer Faserverbund-Strukturbauteile durch automatisierte Legeprozesse wie das Automated Fiber Placement (AFP) stellt die Klebrigkeit (Tack) von Prepregs die entscheidende Materialeigenschaft in Hinblick auf eine stabile Prozessführung und die davon abhängige Laminatqualität dar. In der industriellen Fertigung beruht die Einstellung des Prepreg-Tacks derzeit vorwiegend auf Erfahrungswissen und heuristischem Vorgehen durch Trial-and-Error. Dies geschieht in der Regel unter Ausblendung von Umwelteinflüssen und den Eigenschaften des verarbeiteten Materials, sodass bei diesem Vorgehen zugrundeliegende Mechanismen und die komplexen wechselseitigen Abhängigkeiten beim Prepreg-Tack unverstanden bleiben. Ziel der von der DFG geförderten Sachbeihilfe „TackTIC“ ist daher die Generierung eines bisher nicht existenten Grundverständnisses zu Einflüssen und Wirkmechanismen des Tacks von vorimprägnierten Kohlenstofffaser-Halbzeugen und dessen Modellierung. Das zu entwickelnde Materialmodell erlaubt es erstmals, auf Grundlage von chemischer Zusammensetzung und den davon determinierten, materialinhärenten Kennwerten sowie von Prozessparametern und fertigungsrelevanten Umwelteinflüssen eine Abschätzung des sich einstellenden Klebeverhaltens vorzunehmen.

Förderer: Deutsche Forschungsgemeinschaft DFG

Laufzeit: 2021-2024

Open-Acces-Artikel über die Simulation von Eigenspannungen in geschweißten Thermoplast-Strukturen erschienen: Numerical Investigation of Residual Stresses in Welded Thermoplastic CFRP Structures

Using thermoplastics as the matrix in carbon fiber-reinforced polymers (CFRP) offers the possibility to make use of welded joints, which results in weight savings compared to conventional joining methods using mechanical fasteners. In this paper, the resulting temperature distribution in the material due to resistance welding is investigated by transient finite element (FE) simulations. To examine the effects on the component structure, a numerical modeling approach is created, which allows determining the residual stresses caused by the welding process. It is shown that the area of the structure, especially near the joining zone, is highly affected by the process, especially in terms of residual stresses. In particular, the stresses perpendicular to the fiber direction show failure relevant values, which might lead to the formation of microcracks in the matrix. In turn, that is assumed to be critical in terms of the fatigue of welded composite structures. Thus, the suggested modeling approach provides residual stresses that can be used to determine their effects on the strength, structural stability, and fatigue of such composite structures.

Follow the link to the entire article.

Neuer Beitrag zum Thema Mischbauweisen und der Anwendung des Multilayer-Insert auf zylindrische Strukturen auf LinkedIn

Transformed #MULTILAYERINSERT to cylindrical applications:
In former work within the #SPP1712 we reported about the increase of applicable load into carbon fiber structures due the use of local metal inserts. The Mutlilayer-Insert, which we call the scalable stack of load-appropriate dimensioned thin metal sheets, consists of a complete metal-region, which makes load introduction easier having the ability to use different kinds of joining techniques known in the area of metal constructions. Some days ago, we transferred this approach to cylindrical carbon fiber structures. 

Tristan Hocke promoviert erfolgreich im Bereich Künstlicher Intelligenz

Am 21.10.2020 verteidigte Tristan Hocke, ehemaliger Mitarbeiter unserer Forschergruppe, erfolgreich seine Dissertation mit dem Titel “Klassifizierung und Untersuchung von thermografisch erfassten Fertigungsfehlern im Automated-Fiber-Placement-Prozess”. Kern der Arbeit von Herrn Hocke war es, die thermografische Prozessüberwachung durch Umsetzung von Methoden des Maschinellen Lernens und Künstlicher Intelligenz soweit zu entwickeln, dass Anomalien innerhalb der automatisierten Fertigung von Faserverbundstrukturen erkannt und eindeutig benannt werden können. Mit seiner Arbeit liefert er einen sehr wichtigen Beitrag zur Steigerung der Prozesssicherheit der Fertigungstechnologie.

Wir gratulieren ganz herzlich zu diesem Erfolg!

Neuer Beitrag zum Thema Energieeffizient und ressourcenschonend: Thermoplastische Faserverbundkunststoffe auf LinkedIn

Some days ago, we put our latest experimental fiber placement rig into operation. It is part of the research project #JoinTHIS, in which we, among other things, develop and investigate the lay-up of #ThermoplasticComposites. Core of our self-developed fiber placement head is a 2,4 kW #VCSEL (Vertical-Cavity Surface-Emitting Laser) laser from TRUMPF. While the head is currently under construction, the laser was proved and tested successfully.