Innovative Legetechnologie: Flexible Fertigung formkomplexer Faserverbundstrukturen
Wie kann die Fertigung fortschrittlicher Großstrukturen im Faserverbundleichtbau wirtschaftlich automatisiert werden? Ist der Laminierprozess mit textilen Faserhalbzeugen auch bei formkomplexen Strukturkonzepten maschinell realisierbar? Diesen Fragestellungen stellt sich das Institut für Fertigungstechnik und Werkzeugmaschinen (IFW) der Leibniz Universität Hannover im Verbund mit den Technischen Universitäten Clausthal und Braunschweig im Forschungszentrum CFK-Nord in Stade. Das Ergebnis einer dreijährigen Forschungs- und Entwicklungsarbeit ist eine innovative Legetechnologie, die unterschiedliche Trockenfasertextilen in einem kontinuierlichen Prozess konfektioniert, imprägniert und fasergerecht in Formwerkzeuge auch mit hoher Formkomplexität ablegt.
Legetechnologien wie das Automated-Fiber-Placement (AFP) sind in der Luft- und Raumfahrtindustrie etablierte Fertigungsverfahren zur Herstellung von Hochleistungs-Faserverbundstrukturen. Die darin eingesetzten vorimprägnierten Faserhalbzeuge (Prepreg) sind jedoch in der Herstellung sehr kostenintensiv, müssen bis zu ihrer Verarbeitung gekühlt gelagert werden und erreichen die gewünschten Materialeigenschaften nur durch die Aushärtung im Autoklaven, einem beheizbaren Druckbehälter. Der Lagenaufbau mit trockenen Fasertextilien erfolgt hingegen in kostensensitiveren Industriebereichen wie dem Energiesektor oder Transportwesen weitestgehend händisch bevor dieser im Infusionsverfahren imprägniert wird. „Zu Projektbeginn haben wir innerhalb einer anwendungsübergreifenden Anforderungsanalyse u. a. die Produktion von Windturbinenflügeln angesehen und waren erstaunt, dass die bis zu 100 Meter langen Formwerkzeuge vollständig von Hand belegt wurden“, berichtet Projektmitarbeiter Simon Werner vom IFW.
Ziel des EFRE-geförderten Projekts FlexProCFK war die Entwicklung einer Technologie zum kontinuierlichen Nassdrapieren trockener Textilbahnen auf individuellen Strukturbauteilen. Hierbei soll das Drapiersystem flexibel auf die Ansprüche unterschiedlicher Anwendungsfelder konfigurierbar und die Technologie skalierbar sein. Demonstriert wurde die Technologie zunächst an einem neuartigen Strukturkonzept mit diagonalversteiftem Flugzeugrumpf. Besonderheit der bionisch anmutenden Versteifungsarchitektur ist ihre individuell an die Belastungssituation im zugehörigen Rumpfsegment angepasste Gestalt, sowie die Berücksichtigung textilspezifischer Fertigungsrestriktionen bei der Strukturauslegung. Projektmitarbeiter Werner: „Mit dem neuartigen Strukturkonzept und der im Projekt umgesetzten Fertigungstechnologie können wir zukünftig das Hautfeld und die Versteifungsstruktur von Flugzeugrümpfen ohne zusätzliche Nietverbindungen fügen. Mit unserer Technologie fertigen wir über die direkte Ablage der Versteifungen auf der noch unausgehärteten Rumpfaußenhaut ein Integralbauteil.“
Das Drapiersystem haben die Forscher modular aufgebaut. Das Faserhalbzeug kann vor dem eigentlichen Drapiervorgang in mehreren aufeinander folgenden Schritten vorbereitet werden. Das Textil wird dabei in seinen Drapiereigenschaften durch Vorfixierung eines Thermoplastbinders beeinflusst, auf seine Endkontur zugeschnitten und mit einer duroplastischen Matrix im Mehrdüsen-Sprühauftrag imprägniert. Herzstück der Technologie ist das letzte Modul in der Kette, das Drapiermodul. Es platziert das Faserhalbzeug auf nahezu beliebig gekrümmten Oberflächen in textilgerechter Weise. Werner: „Herausfordernd bei der Entwicklung war dabei nicht nur die Konturnachbildung der unterschiedlichen Oberflächen. Es mussten auch die Umformmechanismen des Textils während des Drapierens berücksichtigt werden“. Basierend auf einem kinematischen Textilmodell haben die Wissenschaftler den Ablageprozess simulativ nachgebildet und numerisch untersucht. „Dabei hat sich gezeigt, dass für die Umformung des Textils ein Spannungsausgleich über die Textilbreite erforderlich ist, den wir über die Ablage an einer ‚geometrieadaptiven Drapierlinie‘ realisieren konnten“, erläutert Werner.
Zur kontinuierlichen Konsolidierung des Faserhalbzeugs an der sich stetig ändernden Drapierlinie wurde ein innovatives Roboterkonzept entwickelt. „Druckluftbetriebene Kontinuumsaktoren aus dem Bereich der Soft-Robotik knicken antagonistisch zwischen positionsgebenden Zweiachs-Kinematiken aus und bilden so den gewünschten Konturzug ab“, so Werner. Das aus Elastomeren Pneumatikaktoren bestehende System stellt aufgrund der hohen Flexibilität jedoch eine Herausforderung für die Steuerungs- und Regelungstechnik dar. Steuerungsziel ist dabei der Erhalt eines gleichmäßigen Oberflächenandrucks im dynamischen Legeprozess.
Künftig soll das Legesystem seine Funktionalität in weiteren Anwendungsfeldern unter Beweis stellen. Mit den assoziierten Partnern M&D Composites Technology GmbH und SCHOTTEL HYDRO GmbH wird in dem durch den Europäischen Fond für Regionale Entwicklung geförderten Forschungsprojekt „AutoBLADE“ die Herstellung von Strukturen mit einem hohen Aspektverhältnis, wie bspw. den Rotorblättern von Gezeitenströmungsturbinen, erforscht.
Open-Acces-Artikel über die Simulation von Eigenspannungen in geschweißten Thermoplast-Strukturen erschienen: Numerical Investigation of Residual Stresses in Welded Thermoplastic CFRP Structures
Using thermoplastics as the matrix in carbon fiber-reinforced polymers (CFRP) offers the possibility to make use of welded joints, which results in weight savings compared to conventional joining methods using mechanical fasteners. In this paper, the resulting temperature distribution in the material due to resistance welding is investigated by transient finite element (FE) simulations. To examine the effects on the component structure, a numerical modeling approach is created, which allows determining the residual stresses caused by the welding process. It is shown that the area of the structure, especially near the joining zone, is highly affected by the process, especially in terms of residual stresses. In particular, the stresses perpendicular to the fiber direction show failure relevant values, which might lead to the formation of microcracks in the matrix. In turn, that is assumed to be critical in terms of the fatigue of welded composite structures. Thus, the suggested modeling approach provides residual stresses that can be used to determine their effects on the strength, structural stability, and fatigue of such composite structures.
Follow the link to the entire article.
Neuer Beitrag zum Thema Mischbauweisen und der Anwendung des Multilayer-Insert auf zylindrische Strukturen auf LinkedIn
Tristan Hocke promoviert erfolgreich im Bereich Künstlicher Intelligenz
Am 21.10.2020 verteidigte Tristan Hocke, ehemaliger Mitarbeiter unserer Forschergruppe, erfolgreich seine Dissertation mit dem Titel “Klassifizierung und Untersuchung von thermografisch erfassten Fertigungsfehlern im Automated-Fiber-Placement-Prozess”. Kern der Arbeit von Herrn Hocke war es, die thermografische Prozessüberwachung durch Umsetzung von Methoden des Maschinellen Lernens und Künstlicher Intelligenz soweit zu entwickeln, dass Anomalien innerhalb der automatisierten Fertigung von Faserverbundstrukturen erkannt und eindeutig benannt werden können. Mit seiner Arbeit liefert er einen sehr wichtigen Beitrag zur Steigerung der Prozesssicherheit der Fertigungstechnologie.
Wir gratulieren ganz herzlich zu diesem Erfolg!
Neuer Beitrag zum Thema Energieeffizient und ressourcenschonend: Thermoplastische Faserverbundkunststoffe auf LinkedIn
Open-Acces-Artikel über Prepreg Tack erschienen: A review of mechanisms, measurement, and manufacturing implication
The stickiness of prepregs (tack) is considered a decisive material property for the success of high‐quality composite manufacturing by automated lay‐up processes such as automated fiber placement (AFP) or automated tape laying (ATL). Adverse control of prepreg tack can easily result in laminate defects or machine breakdown, which are highly undesirable considering the tremendous machinery and material costs of these processes. Prepreg tack is governed by a complex interaction of adhesive and cohesive phenomena that are influenced by machine and environmental parameters of the production process as well as by intrinsic properties of the prepreg material itself. This review aims at providing a condensed insight into the current state of research on prepreg tack. Therefore, experimental studies including the discussion of utilized tack measurement methods as well as model approaches to prepreg tack are reviewed. The findings are discussed against the background of fundamental mechanisms, the strong interdependency of influencing parameters and the challenge of translating measured tack data into an enhanced AFP/ATL process stability by process adjustment.
Follow the link to the entire article.
Neuer Beitrag zum Thema CWD – Continuous Wet Draping auf YouTube
Neuer Beitrag zum Thema Mischbauweisen auf LinkedIn: Our high performance Composite Joining Method #MULTILAYERINSERT has gotten even better:
DFG SPP1712 Multilayer-Inserts: Ergebnispräsentation auf der Hybrid 2020
Multilayer-Inserts bieten für Mischbauweisen von Faserverbundwerkstoffen mit metallischen Werkstoffen eine optimale Verbindungstechnologie mit hervorragenden mechanischen Eigenschaften. Eine deutlich gesteigerte Leistungsfähigkeit für das Einleiten von Kräften in dünnwandige Faserverbundstrukturen konnte im Rahmen des Schwerpunktprogramms 1712 „Intrinsische Hybridverbunde“ durch den Einsatz lokaler Hybridstrukturen, die in Form von metallischen Einzellagen im Bereich der Krafteinleitung vorliegen, erzielt und nachgewiesen werden. Dabei substituieren die metallischen Einzellagen örtlich Faserlagen in gleicher Dicke. Der schichtweise Aufbau bewirkt eine Vergrößerung der Überlappungsfügung zwischen den Metalllagen und dem umgebenden Laminat und realisiert eine Einleitung der angreifenden Kraft in alle Laminatlagen mit einem in Zentrum befindlichen reinmetallischen Kern.
Auf der vom 28.4. bis zum 29.4. stattfindenden Hybrid 2020 werden die in den vergangenen sechs Jahren erzielten Ergebnisse, wie zurzeit üblich über eine Web-Konferenz, präsentiert. Wir bedanken uns herzlich bei der Deutschen Forschungsgemeinschaft (DFG) für die Förderung dieses Schwerpunktprogramms 1712 “Intrinsische Hybridverbunde” und damit unserer interdisziplinären Forschung.
Mehr zum Thema und auch zu allen weiteren Projekten auf dem YouTube Kanal des SPP1712: